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Abstract-D(erivation of the closed-form Green’s functions has

eliminated the computationally expensive evaluation of the Som-
merfeld integrals to obtain the Green’s functions in the spatial

domain. Therefore, using the closed-form Green’s functions in

conjunction with the method of moments (MoM) has improved
the computational efficiency of the technique significantly. Fur-

ther improvement can be achieved on the calculation of the
matrix elements involved in the MoM, usually double integrals for
planar geometries, by eliminating the numetical integration. The
contribution of this paper is to present the analytical evaluation

of the matrix elements when the closed-form Green’s functions
are used, and to demonstrate the amount of improvement in
computation time.

I. INTRODUCTION

E LECTRC)MAGNETIC modeling plays an important role

in the analysis and the design of electronic packages,

high-speed digital circuits, and microwave integrated cir-

cuits, most of which are fabricated in a planar environment.

Therefore, a variety of numerical techniques for accurately

modeling and simulating the electrical performances of such

circuits have been proposed and studied extensively. These

include the method of moments (MoM) [1], the finite el-

ement methoci (FEM) [2], the finite-difference time-domain

method (FDTD) [3], and quasi-static methods like conforrnal

mapping [4]. Among these approaches, the MoM in the

spatial and the spectral domains are the most commonly

used numerical techniques in the rigorous analysis of printed

geometries in multilayer planar media. As these structures

are generally used in the design of monolithic microwave

integrated circuits (MMIC) and printed antennas, improving

the numerical efficiency of the MoM has been a major research

topic in computational electromagnetic. In the analysis of

electrically small geometries (spanning a few wavelengths in

two dimensions), the efficiency can be improved by reducing

the computation time used to evaluate the matrix elements,

since the significant part of the overall solution time is the

calculation of the matrix elements, also called matrix-fill time.
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In the spectral domain formulation, the MoM matrix ele-

ments involve two-dimensional (2-D) integrals of complex,

oscillatory, and slow-converging functions over an infinite

domain [5]. Therefore, the numerical evaluation of these

elements is quite time consuming, rendering the technique

computationally inefficient. Although acceleration techniques

and approximations can imprlove the computational efficiency

of the spectral-domain MoM, they are more likely to impose

some restrictions.

On the other hand, the application of the spatial-domain

MoM to the mixed-potential integral equation (MPIE) requires

the necessary Green’s functions in the spatial domain [6]. The

spatial-domain Green’s functions can be o~,ained from their

spectral domain counterparts, which can be derived analyti-

cally for planar multilayer media, via Hankel transformation,

also called Sommerfeld integral [7], [8]. Because the kernel of

the transformation is the Bessel function of the first kind and

because the function to be transformed is the spectral-domain

Green’s function, the integrand is an oscillatory and slow-

converging function. Therefore, the calculation of the spatial-

domain Green’s function, i.e., numerical implementation of

the Hankel transformation, is the computational bottleneck of

the spatial-domain MoM.

An approach has recently been proposed to accelerate the

calculation of the spatial-domain Green’s functions [9]. In

its original form, the spectral-domain Green’s function to be

transformed is approximated by complex exponential via the

original Prony method, and the Hankel transformation can

be performed analytically with the use of the Sommerfeld

identity. Although the original approach was restricted for a

single, thick substrate and for an horizontal electric dipole

source, it was improved first to cover geometries with a

substrate and a superstrata of arbitrary thicknesses [10], then to

cover for multilayer geometries with arbitrary thicknesses and

for arbitr~’ source types, horizontal electric dipole (HED),

vertical electric dipole (VED), horizontal magnetic dipole

(HMD), and vertical magnetic dipole (VMD) [1 1]. A defi-

ciency of this approach is its being not robust, that is, one

needs to examine the function to be approximated prior to the

application of an exponential approximation method in order

to decide on the approximation parameters, like the range of

the approximation and the number of samples in this range.

With a recent improvement on the approxi~ation scheme,

the calculation of the spatial-domain Green’s functions has
become robust and extremely efficient [12]. The use of the

closed-form Green’s functions in conjunction with the MoM

results in 2-D integrals over finite domains, and consequently

the computational efficiency of the spatial-domain MoM has
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been improved significantly, about two order of magnitudes

[13], compared to the spectral domain approach, In this paper,

we demonstrate that the use of the complex exponential

in place of the spatial-domain Green’s functions facilitates

analytical evaluation of the double integrals. Therefore, a

substantial improvement in the matrix-fill time is achieved.

Since the use of the closed-form Green’s functions is

crucial for the formulation proposed in this paper, we’ review

closed-form Green’s functions in Section II. Section III gives

the evaluation of the double integrals and necessary integral

identities. Section IV describes application of the formulation

to a rnicrostrip geometry and computational efficiency. Section

V presents the conclusion.

II. CLOSED-FORM GREEN’S FUNCTIONS

It is well known that the spectral-domain Green’s functions

for the vector and scalar potentials are represented analytically

in a multilayer medium, [11], [14]. Hence, the spatial-domain

Green’s functions are simply the Hankel transform of the

spectral-domain Green’s functions as ‘defined

G=~
/4T SIP

dkpk,Hf2)(kpp)G( kp) (1)

where k; = k: + k;, p is the variable in cylindrical coordinate

system, G and G are the Green’s functions in the spatial and

‘2) is the Hankel function ofspectral domains, respectively, 110

the second kind and SIP is the Sommerfeld integration path.

Note that this integral, also called the Sommerfeld integral, can

not be evaluated analytically for the spectral-domain Green’s

functions G. Chow et al. [9] recognized that if the spectral-

domain Green’s function G is approximated by exponentials,

the Sornrnerfeld integral (1) can be evaluated analytically using

the well-known Sommerfeld identity

The approximation of the spectral-domain Green’s functions

by complex exponential is the heart of this technique, and

as described in [12] the two-level approximation scheme in

conjunction with the generalized pencil of function (GPOF)

method, [15], results in a robust and computationally efficient

approach, whose details are given in [12]. Following the two-

level approach, the spectral-domain Green’s function can be

written as

where aln, al~ and az~, cy.znare the coefficients and exponents

obtained from the application of the GPOF method in the first

and second parts of the two-level approximation, respectively,

and the subscript “s” denotes the layer number of the source lo-

cation. Once this representation of the spectral-domain Green’s
finction is substituted into(1) and the Somtnerfeld identity (2)

is employed, the spatial-domain Green’s function can

into a form of

be cast

(4)

c, Substrate -v
? Ground plane

Fig. 1. A typical microstrip geometry. .+ = 4.0, d = 0.02032 cm, .f = 1.0

GHz.
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Fig. 2. The magnitude of the nonnatized Green’s functions
47rG#Z /IS~, 47r~0Gg. e, = 4.0, d = 0.02032 cm, f = 1.0 GHz.

where rl~ = X2 + Y2 — afn and r2~, = @+ ~2 -.2
2n

are the complex distances and ks is the wave number in the

source medium.

As an example, consider the following parameters for the

geometry of a substrate backed by a ground plane as in

Fig. 1 which shows the dielectric constant of the substrate

CT = 4; the thickness of the substrate d = 0.02032 cm;

and the frequency of operation j = 1,0 GHz. The Green’s

functions of the vector and scalar potentials due to a HED

at the air-substrate interface are obtained in closed forms via

two-level approximation scheme, and the coefficients aln, azn

and the exponents aln, czzn are given in Table I along with the

normalized Green’s functions for vector and scalar potentials,

4nG&Jpo and 4reOGq, respectively, in Fig. 2.

III. FORMULATION

This formulation is applicable to general microstrip geome-

tries in a multilayer medium where it is assumed that the

layers extend to infinity in the transverse directions. However,

to avoid complexity and to emphasize the main idea of the
proposed method, the formulation is presented, without loss

of generality, for a microstrip line on a substrate for which

only the longitudinal current is assumed to exist.

The mixed-potential integral equation for the microstrip line

can be transformed into the matrix equ~ation with the use of
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TABLE I
COEFFICIENTS AND EXPONENTS FOR THE CLOSED-FORM GRSEN’S FUNCTIONS

47rG:=/po = p: ‘4 ane-jk”’- /rn

771000~j0.0000 0.000;;0.0406

0.495e-6-j0.123e-5 -0.0512+j0.0505

0.49&-6+j0.123e-5 0.0511 +j0.0506

l.o+.io.o O.o+jo.o

4moGq = ~~~~g ane-jk”r” /rn

-0,590;;3+j0,0 0. O-j0703e-3

0.0196+j0.0374 0.0390+j0.0598

-C1.4485+j0,0 0. O+jO.0345

0.o196-jO.0374 -0.0390+j0.0598

-0.260e-10+j0.771 e-11 -53.33+j439.67

0.279e-5-j0.245e-6 -0.3396 +j0.9239

0.204e-6+j0.328&6 1.0270-jO.2907

l. O+iO.O O.O+iO.O

the well-known MoM procedure, and a typical matrix element

is given below to help demonstrate the use of the formulation

( a(Gq”~Bzn))“)(Gn,@m * Em) + + T.m, ~

where ( , ) and * denote inner product and convolution,

respectively, and T.m, Bzn are the testing and basis functions,

respectively. Thle first inner product of (5) is written explicitly

as

(T.m, G:.* B..)

—
-//

dx dyTzm(x, y)

DT

“s.7dx’ d/G&,(z – z+, y – y’)Bzm(z’, Y’) (6)

DB

where DT and DB denote the domains of the testing and

basis functions, respectively, and the closed-form Green’s

function G& ifs expressed as in (4). By changing the order

of integration, the inner product takes the form of

//
dll dvG& (U, V)

/.7
dx W’.m(z, Y)

. B.n(x – ‘u, y – v) (7)

where the inner double integral is a correlation function

represented as T.m @ Bzn. As is well known, the choice

of the basis and testing functions are of great importance

for the accuracy of the results and for the convergence of

the matrix elements involved in the MoM [16]. Since the
formulation presented here requires the correlation function

to be polynomial function, the choice of testing and basis

functions is restricted to polynomial like functions. Therefore,

we choose the rooftop functions, which are triangular functions

in the longitudinal direction and uniform in the transverse

direction, as the basis and testing functions. Half rooftop

functions are also used to model the current density at the

load and source terminals [13].

For the above choice of the basis and testing functions, the

correlation function becomes

(8)Tzm @ Bm = f(~)9(v)

where

f(u) =y~us+ ‘y~uz + ‘y~u + ‘-yo

(rn-n-2)h,,< u<(rn-n+2)h.

(9)

and To, TI, Tz, 73 are constants determined by m, n, and h.

(the half-span of the basis functions in z-direction); and the

length of the unit cell in y-direction, hy, is chosen to be equal

to the width of the microstrip line for the specific geometry

considered herein. It should be noted that the formulation

given here is also valid for a 2-D patch since the order of

the polynomials in (9) is the highest that can be encountered

in the analysis. By substituting the correlation function (8) and

the Green’s function (4) into (7), the inner-product term can

be written as .

;fjan[yo(h9//%dvdu

/./

~–jk.l-%
— —vdvdu

‘rn )

( //
+ ~1 hy

~-jksrrz

—udvdu
r-m

//

~–jkarn
— —UV dv du

.J rn )

( /.’.’+72 hy
~–j~.vn
—Uz dv du

rm

!/

~–~ksrn
— —u2vdvdu

rn )

( //
+73 hy

~—jkern

—U3 dv du
rn

//

~–jkavm
— —— U3V dv du

rn )1

(lo)

where rn is either rln or r2n as defined in (4).

Because the integrals in (10) occur in the calculation of

matrix elements, and because they cannot be evaluated an-

alytically, their numerical evaluations constitute almost the

entire fill time of the MoM matrix. Although the use of

the closed-form Green’s functions in conjunction with the

MoM improves the matrix fill time significantly [13], it could

be further improved if the integrals involved (10) can be

evaluated analytically. It has been shown that the Taylor’s

series expansion of the exponential term in the integrand of

the first integral in (10) results in an analytically integrable

function over a surface [17]. Using this fact, and some of

the integral identities given in [18], we can evaluate the

integrals in (10) analytically. The case of the Taylor’s series

expansion requires examining its convergence for all r-mvalues
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with the same number of terms; therefore, the expansion

is performed around different center points Rc for different

regions corresponding to different basis and testing function

pairs. The mth order Taylor series expansion of f(z) around

,zOinvolves an error term of

emor= r+’ (’)
(m+ ,),(~ - %)m+’

where c is a point in the region of convergence. As the mth

derivative of e-Jks’n is bounded by k?, the error introduced

by using the mth order expansion is

\k,(rn - Rc)lm+l
error ~

(m+l)! “

It can be observed that the distance to the center point

directly determines the error. Hence, to minimize the error,

the locations of the center points are chosen to be the mid-

point of the each integration region for which the integration

intervals are 2hU and 4hz for v and u integrations, respectively,

and c0nsequent1y9 ‘n - ‘c 5 m“ ‘or ‘he choice
of 20 basis functions for each wavelength, rn – R. is bounded

by O.11A and the error is obtained in the following form

(27r x o.11)~+1 _ (o.7)~+1
error <

(m+l)! – (m+l)!
(11)

from which it is easily shown that an error bounded by 10-4

can be obtained with the use of at least five terms of the Taylor

series. The results presented in Section IV demonstrate that

the amount of error of 10–A or smaller does not affect the end

result as the current distributions obtained by using analytic

and numeric integrations are in good agreement. Hence, it is

not worthwhile to increase the number of terms any further.

Using the fifth-order TaylLor series expansion around

R=, e–~k~r~ can be approximated as

where

Replacing the exponential term e–J~,.. in (lo) by its Taylor

series expansion given in (12) results in the integrals of the

type

//
r;ukuzdudv forj=–l) 0,...,4, k= O, ...,3,

,.
1=0,1. (13)

These integrals are analytically integrable and their results are

given in the Appendix. Note that the same procedure presented

above can be applied to the second inner-product term of (5)

in which G~ has the same functional form as G$Z given in (4).

IV. RESULTS AND DISCUSSIONS

In this part of the study, the formulation described above

is applied to a microstrip line to evaluate computational

efficiency. The dielectric constant of the medium is ~, = 4.0,

the ratio of line width w to substrate thickness d is 4.0. The

thickness of the substrate is 0.02032 cm (= 8.0 roils.), the

frequency is 1 GHz, and the length of the line is 10 cm.

Computational efficiency of the proposed method is assessed

in terms of the CPU (central processing unit) time obtained

from a SUNsparc-10 workstation.

The current distribution on the microstrip line is obtained

by numerically integrating the double integrals (7) (Case 1)

involved in the MoM matrix elements, and then by using

the analytic integration formulation presented in Section III

(Case 2). The current distributions obtained via the use of

the numerical integration (Case 1) have been verified by

comparing it with the results obtained via the transmission

line method described in [13]; therefore, Case 1 serves here

as a reference for the accuracy of the current distribution as

well. In the numerical integration, 16-point Gauss quadrature

integration algorithm. which is considered to be one of the

fastest numerical integration algorithms, is employed for the

double integrals for which the range of the integration is

divided into subregions to guarantee the convergence of the

numerical integration. For both cases, the CPU times are

obtained for different numbers of basis functions and are

listed in Table II. The current distributions obtained via

numerical and analytical evaluations of the integrals for 40

basis functions are shown in Fig. 3. It can be observed from

Table 11that the elimination of the numerical integrals reduces

the computation time approximately by a factor of 40. Besides

the improvement in computational efficiency, the formulation

based on the analytical integration also provides a number

of other advantages. First, as the MoM becomes a technique

free from any numerical integrations, the numerical errors

due to integration and the time used to find an appropriate

numerical integration algorithm are eliminated. Second, as the

matrix entries are expressed in closed-forms, the effect of

changes in geometrical parameters. such as length and width

of the microswip line, onto the output parameters like, current

distribution, input impedance or spurious radiation, can be

studied analytically by taking a derivative with respect to

the desired parameter. Finally, if a method uses numerical

integrations, it is necessary to extract the singularity at the

source point, while in the analytic integration formulation

this problem is completely eliminated because the singularities

involved are integrable over a surface. It should be noted that
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Fig. 3. Current distributions obtained by using 40 basis functions.
G- = 4.0. d = 0.02032 cm, f = 1.0 GHz, w = 0.08128 cm, 1 = 10 cm.

TABLE 11
CPU TIMES FOR DIFFERENT NUMBER OF BASIS FUNCTIONS

30 39.0 0.98

40 52.95 1.33

the application of the proposed approach here has no restriction

for the size oft he geometry, provided the closed-form Green’s

functions are valid for the distance as far as the maximum

distance of the geometry.

V. CONCLUSION

When the spatial-domain MoM is used in conjunction with

the closed-form Green’s functions for the solution of the

mixed-potential integral equation, the MoM matrix elements

involve 2-D integrals whose numerical evaluations increase

the matrix fill-time. In order to improve the numerical effi-

ciency of the method, the integraud is approximated by its

Taylor series ;aud each term of the expansion is integrated

analytically. B:y eliminating the numerical integration from the

MoM, the matrix fill-time is decreased drastically, which is a

significant improvement in the matrix-fill time of the MoM.

This acceleration in the matrix fill time makes the MoM a

fast full-wave analysis technique which can be utilized in an

optimization algorithm for the solution of a design problem.

Besides, the proposed method offers other advantages such- as

expressing the matrix entries in closed-forms, which opens up

the possibility of investigating the effect of some parameters

on the end result by examining the matrix entries analytically.

APPmwxx

THE ANALYTIC EVALUATION OFTHE INTEGRALS GIVEN IN (13)

where c is any of the complex exponents. Some special

integrals are defined in order to simplify the formulation

JO z

/
Rdu = ;(Ru+(v2+c2)

. log(u+ R))

Jz =
J

U2R du

_ U(V2 + C2+ 2U2)R _ (V2 + C2)2

J3 =

J4 =

——

J5 =

Jfj =

—

J7 =

—

KO =

K1 =

K. =

I. =

——

8 8
. log (u + R)

J R5 z R3
u3Rdu=~–(v2+c)y

/
U4R du

(
-:(V2 + C2)2 + (V2 + C2)U2

)( )

UR
+ 4U4 ~

+ &02+ C2)3 log (u+ R)

/
u5Rdu = $ – ;R5(v2 + C2)

+ :(J + C2)2

I

U6~. du

7U
~ J5 --

(V2 + C2) J4

+ (F + C2YJ2 _ (v’ + C2)’ Jo

30 15

/
U7~/ du

R9 2 R7
~–3(w2+c)y

2 2R5
+3(V2+C ) y –(V2+ CT:

/
;du=log(u+R)

/
&=R

/
;du = J..z – (W2+ C2)

. Km-z

/ (U2 +lc2)R ‘u

1

()

UV— arctan —
UC CR



524 IJ3EE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES,VOL. 44, NO. 4, APRIL 1996

/
II = p“~p d“

_log(R– v)–log(R+’v)

2V

/
In = (U2 ;:2~ ‘“

= K._2 – C21..2

/
LO= ~~j du

1
=—

()
arct an y

c c

/

log (“2 + C2)
L,= &Fidu= ~

/

“n—l

-Ln = ~n~i du = ~ - C2L.-Z

M. =
J’..

~ dv d“

= (U”+’ log (V + ~) - Ln+2

+ vLl+2)/(n + 1)

//

unRdv du = ;(vJ. + ~m+z + C2kf. )

//
unR2 dv du =

H:-’vc’)+su

// ‘“R3dvdu=:vJn+2 +:(~+v21Jn

+ : (M.+4 + 2C2M.+2 + C* M.)

//

“n+l

unR4dvdu = —
(

C’v+; ++
n+l )

‘% K+ C2V)+S

//
~dvdu=Jn

//
unvRdvdu = ~ + f ‘C2)J”

3

//
“n+3v2

()

“n+l

UnVR2 dv du =
2(n + 3)

+; Cz+f —
2 n+l

1/unvR3dvdu = ~ + *~J.+2

+ (rJ2 + C2)2;———

// 5+%(’2V2+:)

un+5v2

UnVR4 dv du =
2(n + 5)

Un+l

(
C4V2

w’
C2V4

+—

)

-~+~+y .
n+l
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