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Abstract—Derivation of the closed-form Green’s functions has
eliminated the computationally expensive evaluation of the Som-
merfeld integrals to obtain the Green’s functions in the spatial
domain. Therefore, using the closed-form Green’s functions in
conjunction with the method of moments (MoM) has improved
the computational efficiency of the technique significantly. Fur-
ther improvement can be achieved on the calculation of the
matrix elements involved in the MoM, usually double integrals for
planar geometries, by eliminating the numerical integration. The
contribution of this paper is to present the analytical evaluation
of the matrix elements when the closed-form Green’s functions
are used, and to demonstrate the amount of improvement in
computation time.

1. INTRODUCTION

LECTROMAGNETIC modeling plays an important role

in the analysis and the design of electronic packages,
high-speed digital circuits, and microwave integrated cir-
cuits, most of which are fabricated in a planar environment.
Therefore, a variety of numerical techniques for accurately
modeling and simulating the electrical performances of such
circuits have been proposed and studied extensively. These
include the method of moments (MoM) [1], the finite el-
ement method (FEM) [2], the finite-difference time-domain
method (FDTD) {3], and quasi-static methods like conformal
mapping {4]. Among these approaches, the MoM in the
spatial and the spectral domains are the most commonly
used numerical techniques in the rigorous analysis of printed
geometries in multilayer planar media. As these structures
are generally used in the design of monolithic microwave
integrated circuits (MMIC) and printed antennas, improving
the numerical efficiency of the MoM has been a major research
topic in computational electromagnetics. In the analysis of
electrically small geometries (spanning a few wavelengths in
two dimensions), the efficiency can be improved by reducing
the computation time used to evaluate the matrix elements,
since the significant part of the overall solution time is the
calculation of the matrix elements, also called matrix-fill time.
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In the spectral domain formulation, the MoM matrix ele-
ments involve two-dimensional (2-D) integrals of complex,
oscillatory, and slow-converging functions over an infinite
domain [5]. Therefore, the numerical evaluation of these
elements is quite time consuming, rendering the technique
computationally inefficient. Although acceleration techniques
and approximations can improve the computational efficiency
of the spectral-domain MoM, they are more likely to impose
some restrictions.

On the other hand, the application of the spatial-domain
MoM to the mixed-potential integral equation (MPIE) requires
the necessary Green’s functions in the spatial domain [6]. The
spatial-domain Green’s functions can be obtained from their
spectral domain counterparts, which can be derived analyti-
cally for planar multilayer media, via Hankel transformation,
also called Sommerfeld integral [7], [8]. Because the kernel of
the transformation is the Bessel function of the first kind and
because the function to be transformed is the spectral-domain
Green’s function, the integrand is an oscillatory and slow-
converging function. Therefore, the calculation of the spatial-
domain Green’s function, i.e., numerical implementation of
the Hankel transformation, is the computational bottleneck of
the spatial-domain MoM.

An approach has recently been proposed to accelerate the
calculation of the spatial-domain Green’s functions [9]. In
its original form, the spectral-domain Green’s function to be
transformed is approximated by complex exponentials via the
original Prony method, and the Hankel transformation can
be performed analytically with the use of the Sommerfeld
identity. Although the original approach was restricted for a
single, thick substrate and for an horizontal electric dipole
source, it was improved first to cover geometries with a
substrate and a superstrate of arbitrary thicknesses [10], then to
cover for multilayer geometries with arbitrary thicknesses and
for arbitrary source types, horizontal electric dipole (HED),
vertical electric dipole (VED), horizontal magnetic dipole
(HMD), and vertical magnetic dipole (VMD) [11]. A defi-
ciency of this approach is its being not robust, that is, one
needs to examine the function to be approximated prior to the
application of an exponential approximation method in order
to decide on the approximation parameters, like the range of
the approximation and the number of samples in this range.
With a recent improvement on the approximation scheme,
the calculation of the spatial-domain Green’s functions has
become robust and extremely efficient [12]. The use of the
closed-form Green’s functions in conjunction with the MoM
results in 2-D integrals over finite domains, and consequently
the computational efficiency of the spatial-domain MoM has
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been improved significantly, about two order of magnitudes
{13], compared to the spectral domain approach. In this paper,
we demonstrate that the uvse of the complex exponentials
in place of the spatial-domain Green’s functions facilitates
analytical evaluation of the double integrals. Therefore, a
substantial improvement in the matrix-fill time is achieved.

Since the use of the closed-form Green’s functions is
crucial for the formulation proposed in this paper, we review
closed-form Green’s functions in Section II. Section III gives
the evaluation of the double integrals and necessary integral
identities. Section IV describes application of the formulation
to a microstrip geometry and computational efficiency. Section
V presents the conclusion.

II. CLOSED-FORM GREEN’S FUNCTIONS

It is well known that the spectral-domain Green’s functions
for the vector and scalar potentials are represented analytically
in a multilayer medium, [11], [14]. Hence, the spatial-domain
Green’s functions are simply the Hankel transform of the
spectral-domain Green’s functions as defined

. (ko) G

G=— dk,k, H?
SIP

where k2 = k2 +k2, p is the variable in cylindrical coordinate
system, G and G are the Green’s functions in the spatial and
spectral domains, respectively, H. ) is the Hankel function of
the second kind and SIP is the Sommerfeld integration path.
Note that this integral, also called the Sommerfeld integral, can
not be evaluated analytically for the spectral-domain Green’s
functions G. Chow et al. [9] recognized that if the spectral-
domain Green’s function (7 is approximated by exponentials,
the Sommerfeld integral (1) can be evaluated analytically using
the well-known Sommerfeld identity
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The approximation of the spectral-domain Green’s functions
by complex exponentials is the heart of this technique, and
as described in [12] the two-level approximation scheme in
conjunction with the generalized pencil of function (GPOF)
method, [15], results in a robust and computationally efficient
approach, whose details are given in [12]. Following the two-
level approach, the spectral-domain Green’s function can be
written as

n=1

where a1, 01, and a9y, 02, are the coefﬁc1ents and exponents
obtained from the application of the GPOF method in the first
and second parts of the two-level approximation, respectively,
and the subscript “s” denotes the layer number of the source lo-
cation. Once this representation of the spectral-domain Green’s
function is substituted into (1) and the Sommerfeld identity (2)
is employed, the spatial-domain Green’s function can be cast
into a form of
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Fig. 1. A typical microstrip geometry. €, = 4.0,d = 0.02032 cm, f = 1.0‘
GHz.
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Fig. 2. The magnitude of the normalized Green’s functions

ATGA 1o, 47e.Gy. € = 40,d = 0.02032 cm, f = 1.0 GHz.

where 71, = /22 + 4% — o3, and ra, = /72 + 42 — o},
are the complex distances and k&, is the wave number in the
source medium.

As an example, consider the following parameters for the
geometry of a substrate backed by a ground plane as in
Fig. 1 which shows the dielectric constant of the substrate
e, = 4; the thickness of the substrate d = 0.02032 cm;
and the frequency of operation f = 1.0 GHz. The Green’s
functions of the vector and scalar potentials due to a HED
at the air-substrate interface are obtained in closed forms via
two-level approximation scheme, and the coefficients a1, a2,
and the exponents a1, a2, are given in Table I along with the
normalized Green’s functions for vector and scalar potentials,
4rGE, /1, and 47e, G, respectively, in Fig. 2.

III. FORMULATION

This formulation is applicable to general microstrip geome-
tries in a multilayer medium where it is assumed that the
layers extend to infinity in the transverse directions. However,
to avoid complexity and to emphasize the main idea of the
proposed method, the formulation is presented, without loss
of generality, for a microstrip line on a substrate for which
only the longitudinal current is assumed to exist.

The mixed-potential integral equation for the microstrip line
can be transformed into the matrix equation with the use of
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TABLE 1
COEFFICIENTS AND EXPONENTS FOR THE CLOSED-FORM GREEN’S FUNCTIONS

AnGl/po = 3 gty ane=iFn fry
Op, Qp
-1.0000+4-0.0000 0.000+30.0406
0.495e-6-j0.123e-5 | -0.0512+j0.0505
0.498e-6+j0.123e-5 | 0.0511+450.0506

1.0+j0.0 0.04j0.0
4re, Gy = Enmfga e=ikstn Iy,

Un Qp
-0.590623+;j0.0 0.0-30.103e-3
0.0196+4-j0.0374 0.03904-j0.0598

-0.4485+30.0 0.0+30.0345
0.0196-j0.0374 -0.0390+50.0598
-0.260e-10+30.771e-11 | -53.33+4j439.67
0.279e-5-j0.245e-6 -0.3396-+j0.9239
0.204e-6+j0.328¢e-6 1.0270-j0.2907
1.0430.0 0.0-+;0.0

the well-known MoM procedure, and a typical matrix element
is given below to help demonstrate the use of the formulation

1 0 7,

where ( , ) and * denote inner product and convolution,
respectively, and Ty, , By, are the testing and basis functions,
respectively. The first inner product of (5) is written explicitly
as '

(Tmma G z F Bwn

/ | o dyTam(a,)
// dx’ dy’ G

where Dr and Dp denote the domains of the testing and
basis functions, respectively, and the closed-form Green’s
function G4, is expressed as in (4). By changing the order
of integration, the inner product takes the form of

// du dvGA (u,v // dz dyTem(z,y)

an(w U,y — ’U)

- l", Y- yl)an(wl’ yl) (6)

@)

where the inner double integral is a correlation function
represented as T, ® Bzn. As is well known, the choice
of the basis and testing functions are of great importance
for the accuracy of the results and for the convergence of
the matrix elements involved in the MoM [16]. Since the
formulation presented here requires the correlation function
to be polynomial function, the choice of testing and basis
functions is restricted to polynomial like functions. Therefore,

we choose the rooftop functions, which are triangular functions

in the longitudinal direction and uniform in the transverse
direction, as the basis and testing functions. Half rooftop
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functions are also used to model the current density at the
load and source terminals [13].

For the above choice of the basis and testing functions, the
correlation function becomes

Tom ® Bwn = f(u)g(v) ®
where
f(u) =y3u® + u? + Ny + 70
(m—n— Dhy<u<(m—n+2)h,
v+hy —hy<v<0
9(v) = { —vothy 0<v<hy ©)

and 4o, 71, Y2,7v3 are constants determined by m,n, and h,
(the half-span of the basis functions in z-direction); and the
Iength of the unit cell in y-direction, h,, is chosen to be equal
to the width of the microstrip line for the specific geometry
considered herein. It should be noted that the formulation
given here is also valid for a 2-D patch since the order of
the polynomials in (9) is the highest that can be encountered
in the analysis. By substituting the correlation function (8) and
the Green’s function (4) into (7), the inner-product term can

be written as
e —jksrn
[70 (hy / / dv du
Tn

X
EPIL
v
_jks""n
- //6 'udvdu)
Tn

n=1
e=iksrn
o (hy / / Tn
"j’%’"n
— // ¢ uv dv du)
J Tn
e
T (hy // Tn
_jks'r*n.
- // ¢ v dv du)
Tn
—jksTn
+’Y3<hy//e S dv du
—JksTn
// ¢ —udvdv du)]

where r,, is either r1,, or 7y, as defined in (4).

Because the integrals in (10) occur in the calculation of
matrix elements, and because they cannot be evaluated an-
alytically, their numerical evaluations constitute almost the
entire fill time of the MoM matrix. Although the use of
the closed-form Green’s functions in conjunction with the
MoM improves the matrix fill time significantly [13], it could
be further improved if the integrals involved (10) can be
evaluated analytically. It has been shown that the Taylor’s
series expansion of the exponential term in the integrand of
the first integral in (10) results in an analytically integrable
function over a surface [17]. Using this fact, and some of
the integral identities given in [18], we can evaluate the
integrals in (10) analytically. The case of the Taylor’s series
expansion requires examining its convergence for all r,, values

udvdu

—JksTn

uw? dv du

(10)
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with the same number of terms; therefore, the expansion
is performed around different center points R, for different
regions corresponding to different basis and testing function
pairs. The mth order Taylor series expansion of f(z) around
Zo involves an error term of

() (2 — 2g)™ 1

A Y

where ¢ is a point in the region of convergence. As the mth
derivative of e~7%s™ is bounded by k7, the error introduced
by using the mth order expansion is

lks(r'n - Rc)|m+1

error < (m+ 1)!

It can be observed that the distance to the center point
directly determines the error. Hence, to minimize the error,
the locations of the center poiats are chosen to be the mid-
point of the each integration region for which the integration
intervals are 2h, and 4h, for v and u integrations, respectively,

(2hz)* + h2. For the choice

of 20 basis functions for each wavelength, r,, — K. is bounded
by 0.11) and the error is obtained in the following form

and consequently, 7, — R. <

orror < (2r x 0.11)™*1  (0.7)™ "1

(m+1)! (m+1)

Y

from which it is easily shown that an error bounded by 10~*
can be obtained with the use of at least five terms of the Taylor
series. The results presented in Section IV demonstrate that
the amount of error of 10~* or smaller does not affect the end
result as the current distributions obtained by using analytic
and numeric integrations are in good agreement. Hence, it is
not worthwhile to increase the number of terms any further.

Using the fifth-order Taylor series expansion around
R.,e=7%7 can be approximated as

e Ik g e R R (B 4 By, + Bty + Bari

+ Bary + Bs77) (12)
where
K2RZ  KSR®  KIRY | KRS
— 1 ',s - S C_,‘ s C S C - L C
o <+JkR el T +yl20)
k3R2 k4R3 k5R4
— | s 2 Mgt Vs . st
ﬂl—( Gk + kSR + 3§ 5 P g 24>
b — K2 kIR KIRI IR
2=\ T 1 0T
8, = __;”_k;*RC_ ,kiRg_
57U 6 712
k* kPR,
B (ﬂ‘i‘ Y )
kB
s =—iTaq

Replacing the exponential term e~/*<™ in (10) by its Taylor
series expansion given in (12) results in the integrals of the

type

//r%ukvldudv forj =-1,0,---,4, k=0,---,3,
1=0,1. (13)

These integrals are analytically integrable and their results are
given in the Appendix. Note that the same procedure presented
above can be applied to the second inner-product term of (5)

in which G, has the same functional form as G2, given in (4).

IV. RESULTS AND DISCUSSIONS

In this part of the study, the formulation described above
is applied to a microstrip line to evaluate computational
efficiency. The dielectric constant of the medium is €. = 4.0,
the ratio of line width w to substrate thickness d is 4.0. The
thickness of the substrate is 0.02032 cm (= 8.0 mils.), the
frequency is 1 GHz, and the length of the line is 10 cm.
Computational efficiency of the proposed method is assessed
in terms of the CPU (central processing unit) time obtained
from a SUNsparc-10 workstation.

The current distribution on the microstrip line is obtained
by numerically integrating the double integrals (7) (Case 1)
involved in the MoM matrix elements, and then by using
the analytic integration formulation presented in Section III
(Case 2). The current distributions obtained via the use of
the numerical integration (Case 1) have been verified by
comparing it with the results obtained via the transmission
line method described in [13]; therefore, Case 1 serves here
as a reference for the accuracy of the current distribution as
well. In the numerical integration, 16-point Gauss quadrature
integration algorithm, which is considered to be one of the
fastest numerical integration algorithms, is employed for the
double integrals for which the range of the integration is
divided into subregions to guarantee the convergence of the
numerical integration. For both cases, the CPU times are
obtained for different numbers of basis functions and are
listed in Table II. The cwrent distributions obtained via
numerical and analytical evaluations of the integrals for 40
basis functions are shown in Fig. 3. It can be observed from
Table II that the elimination of the numerical integrals reduces
the computation time approximately by a factor of 40. Besides
the improvement in computational efficiency, the formulation
based on the analytical integration also provides a number
of other advantages. First, as the MoM becomes a technique
free from any numerical integrations, the numerical errors
due to integration and the time used to find an appropriate
numerical integration algorithm are eliminated. Second, as the
matrix entries are expressed in closed-forms, the effect of
changes in geometrical parameters. such as length and width
of the microstrip line, onto the output parameters like, current
distribution, input impedance or spurious radiation, can be
studied analytically by taking a derivative with respect to
the desired parameter. Finally, if a method uses numerical
integrations, it is necessary to extract the singularity at the
source point, while in the analytic integration formulation
this problem is completely eliminated because the singularities
involved are integrable over a surface. It should be noted that
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r — cm

Fig. 3. Current distributions obtained by using 40 basis functions.
e = 4.0.d = 0.02032 cm, f = 1.0 GHz, w = 0.08128 cm, ! = 10 cm.

TABLE 1I
CPU TIMES FOR DIFFERENT NUMBER OF BASIS FUNCTIONS

number of | CPU time in sec. | CPU time in sec.
basis func. (Case 1) (Case 2)

10 13.3 0.36

20 27.0 0.65

30 39.0 0.98

40 52.95 1.33

the application of the proposed approach here has no restriction
for the size of the geometry, provided the closed-form Green’s
functions are valid for the distance as far as the maximum
distance of the geometry.

V. CONCLUSION

When the spatial-domain MoM is used in conjunction with
the closed-form Green’s functions for the solution of the
mixed-potential integral equation, the MoM matrix elements
involve 2-D integrals whose numerical evaluations increase
the matrix fill-time. In order to improve the numerical effi-
ciency of the method, the integrand is approximated by its
Taylor series and each term of the expansion is integrated
analytically. By eliminating the numerical integration from the
MoM, the matrix fill-time is decreased drastically, which is a
significant improvement in the matrix-fill time of the MoM.
This acceleration in the matrix fill time makes the MoM a
fast full-wave analysis technique which can be utilized in an
optimization algorithm for the solution of a design problem.
Besides, the proposed method offers other advantages such as
expressing the matrix entries in closed-forms, which opens up
the possibility of investigating the effect of some parameters
on the end result by examining the matrix entries analytically.
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APPENDIX
THE ANALYTIC EVALUATION OF THE INTEGRALS GIVEN IN (13)

R=+u?+v2+¢c2

where ¢ is any of the complex exponents. Some special
integrals are defined in order to simplify the formulation

Jo= /Rdu = %(Ru+(v2+02)

-log (u + R))
R3
J1 = /uRdu =3
Jo = /qudu
_ u(v2 +c? + 2R _ (112 + 02)2
N 8 8
-log (u+ R)
5 3
J3 = /u3Rdu _E_ (v? +02)R—
5 3
Jy= /u4Rdu

— (__g(,v2 +C2)2 + (’112 +C2)u2

o) ()

1
+ E(u2 +c?)?log (u + R)
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- _ 3 2 2\2Y
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